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Abstract. We derive the LO DGLAP evolution equation for the full Mellin moments of the first moment
of the nonsinglet parton distribution truncated at x0. This “moment of moment” approach allows one to
determine the small-x0 behaviour of the truncated first moment. We compare our predictions to results ob-
tained from x-space solutions for parton distributions with use of the Chebyshev-polynomial method and to
solutions of the evolution equations for the truncated moments proposed by other authors. The comparison
is performed for different input parametrisations for 10−5 ≤ x0 ≤ 0.1 and 1≤Q

2 ≤ 100 GeV2. We give an
example of an application to the determination of the contribution to the Bjorken sum rule.

PACS. 12.38.Bx; 11.55.Hx

1 Introduction

Deep inelastic scattering (DIS) experiments provide
knowledge about the internal structure of the nucleon.
Measurements on proton, deuteron and neutron targets
allow also for the verification of sum rules [1–3] – basic re-
lations in QCD. Sum rules for unpolarised and polarised
structure functions refer to their Mellin moments. Partic-
ularly important roles in the experimental and theoretical
QCD tests play the first moments of the parton den-
sities, which have a physical interpretation and can be
determined from the data. From an experimental point
of view, however, the accurate verification of sum rules
is unreliable. Determination of the sum rules requires
knowledge of the structure functions over the entire re-
gion of the Bjorken variable x ∈ (0; 1). The lowest limit
of x in the present experiments is about 10−5 and the
limit x→ 0, which means that the invariant energy W 2

of the inelastic lepton-hadron scattering becoming infi-
nite (W 2 =Q2(1/x−1)) will never be attained. Therefore
it is very hopeful in the theoretical analysis to deal with
truncated instead of full moments of the structure func-
tions. This enables one to avoid uncertainties from the
unmeasurable x→ 0 region. The most familiar theoret-
ical approach, which describes scaling violations of the
parton densities in perturbative QCD has been formu-
lated by Dokshitzer, Gribov, Lipatov, Altarelli and Parisi

a e-mail: dstrozik@po.opole.pl
b e-mail: kotlorz@po.opole.pl

(DGLAP) [4–7]. The evolution equations for the moments
of parton distributions truncated at low x0 are however
more complicated than in a case of the full moments. These
are not diagonal and each nth truncated moment cou-
ples to the (n+ j)th (j ≥ 0) truncated moments [8–10].
For n ≥ 2 the series of couplings to higher moments is
very fast convergent. Even for a small (m = 4) number
of terms in the expansion of the truncated counterpart
of the anomalous dimension Gn, the higher moments can
be calculated with excellent accuracy. The first moment
is more sensitive to the truncated point x0 and the con-
vergence of Gn for n = 1 is weaker than for the higher
moments. Nevertheless, it has been shown in [11] that
for more terms of the Gn expansion (m ∼ 30) the uncer-
tainty in the determination of the first moment at x0 ≤ 0.1
and Q2 = 10GeV2 does not exceed 5% independent on
the input parametrisation. However, this increase with m
of the accuracy does not proceed infinitely. Numerical er-
rors, which occur for larger m (dependent on x0) make
further improvement of the precision impossible. It may
be very useful to discuss the methods of the theoretical
determination of truncated first moments of parton dis-
tributions, because these predictions would be directly
verified experimentally. In this paper we present an ap-
proach in which we compute the first moments truncated
at small x0 using the inverse Mellin transform of their
full moments. In other words, our method is based on
the solutions for the full nth moments of the truncated
first moment of the parton distribution. This “moment
of moment” technique would be complementary to other
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known methods in the determination of the sum rule
contributions.
The content of this paper is as follows. In Sect. 2 we re-

call the ways of computing the truncated moments within
the DGLAP approximation. Thus Sect. 2.1 contains a brief
description of the Chebyshev-polynomial approach for x-
space solutions of the DGLAP evolution equations. In
Sect. 2.2 we recall the idea of the DGLAP evolution equa-
tion for the truncated moments, which underlies our “mo-
ment of moment” technique. This modified method is pre-
sented in Sect. 2.3. For simplicity we consider the quark
nonsinglet LO evolution. In Sect. 3 we compare solutions
for the first moment of the nonsinglet structure function
truncated at small x0, obtained with use of the above-
mentioned earlier approaches. As an example we explore
the Bjorken sum rule (BSR). In Sect. 4 we present predic-
tions for the low-x contribution to the BSR together with
experimental constraints. Finally, in Sect. 5 we summarise
our results.

2 Determination of the truncated
Mellin moments of parton distributions

For the (full) Mellin moments of the parton distributions
p(x,Q2) we have

M [p](n,Q2) =

1∫

0

dxxn−1p(x,Q2) ; (1)

for these the DGLAP evolution equation can be solved
analytically. This is because in the moment space n one ob-
tains simple diagonalised differential equations. The only
problem is the knowledge of the input parametrisation for
the whole region 0≤ x≤ 1, which is necessary in the deter-
mination of the initial momentsM [p](n,Q2 =Q20):

M [p]
(
n,Q20

)
=

1∫

0

dxxn−1p
(
x,Q20

)
. (2)

Using the truncated moments approach one can avoid the
uncertainties from the region x→ 0, which will never be
attained experimentally.
The Mellin moment of the parton distribution p(x,Q2)

truncated at x0 is defined by

M [p]
(
x0, n,Q

2
)
=

1∫

x0

dxxn−1p(x,Q2) . (3)

From the theoretical point of view, there are two ways
to avoid the problem of dealing with the unphysical re-
gion x→ 0. The first one is to work in x-space and ob-
tain directly the evolution of the parton distributions (not
of their moments). The best known methods for solving
the Q2 evolution equations for parton distributions in x-

space are the brute-force [12], Laguerre-polynomial [13, 14]
or Chebyshev-polynomial [15–18] approaches. In this way,
the truncated moment can be simply found by integrating
the x-space solutions p(x,Q2) over the cut range x0 ≤ x≤ 1
(see Sect. 2.1). An alternative way is to use the evolution
equations directly for the truncated moments. The appro-
priate DGLAP evolution equations for the truncated mo-
ments have been derived in [8–10]. Authors have shown
that these equations, though not diagonal, can be solved
with quite good precision for n ≥ 2, even for a very small
number of terms in the expansion series. In the case of the
first moment, the accuracy is worse and more terms in the
Gn expansion must be taken into account. We briefly recall
the idea of solving the evolution equations for truncated
moments in Sect. 2.2. Based on this idea, we have derived
the evolution equation for a truncated first moment in
a diagonal form. The appropriate integro-differential equa-
tion contains only one function – q1(x,Q

2), which denotes
the first moment truncated at x, without coupling to the
other, higher moments. Then, using the full Mellin mo-
ments approach, we have found the small-x= x0 behaviour
of the function q1(x,Q

2), which is simply the first mo-
ment truncated at low-x0. A detailed description is given in
Sect. 2.3.

2.1 LO DGLAP evolution equations with use
of the Chebyshev-polynomial expansion

The Chebyshev-polynomial technique [19] was success-
fully used by Kwieciński in many QCD treatments [15–
18]. Using this method one obtains a system of lin-
ear differential equations instead of the original integro-
differential ones. For example, in order to solve the LO
DGLAP evolution equation for the nonsinglet parton
distribution p≡ qNS,

∂p(x, t)

∂t
=
αs(t)

2π

1∫

x

dz

z
Pqq

(x
z

)
p(z, t) , (4)

one has to expand the functions p(x, t) into the series of the
Chebyshev-polynomials. In this way, the integration over z
in the evolution equation (4) can be performed, which leads
to the system of linear differential equations

dp(xi, t)

dt
=
N−1∑
j=0

Hijp(xj , t) . (5)

This system can be solved by using the standard Runge–
Kutta method with initial conditions given by the input
parametrisation p(xj , t0). The moments truncated at x0
are simply computed numerically via integrating (3). The
Chebyshev expansion provides a robust method of dis-
cretising a continuous problem. This allows for comput-
ing the parton distributions for a “not too singular” input
parametrisation in the whole x ∈ (0; 1) region. A more de-
tailed description of the Chebyshev-polynomial method in
solving the QCD evolution equations is given e.g. in the
appendix of [11].
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2.2 Evolution equations for truncated moments

LO DGLAP evolution equation for the Mellin moment of
the nonsinglet structure function truncated at x0 found by
Forte, Magnea, Piccione and Ridolfi (FMPR) [8–10] has
the form

∂M [p](x0, n, t)

∂t
=
αs(t)

2π

1∫

x0

dyyn−1p(y, t)Gn

(
x0

y

)
, (6)

where

t≡ ln
Q2

Λ2QCD
, (7)

and

Gn(z)≡

1∫

z

dyyn−1Pqq(y) (8)

is the truncated anomalous dimension. Expanding
Gn(x0/y) into a Taylor series around y = 1 gives

∂M [p](x0, n, t)

∂t
=
αs(t)

2π

m∑
j=0

C
(m)
jn (x0)M [p](x0, n+ j, t) .

(9)

Equation (9) is not diagonal, but each nth moment cou-
ples only with (n+ j)th (j ≥ 0) moments. Because the se-
ries of couplings to the higher moments is convergent, and
furthermore the value of the (n+ j)th moments decreases
rapidly in comparison to the nth moment, one can retain
from (9) the closed system ofm+1 equations:

∂M [p](x0, n, t)

∂t

=
αs(t)

2π

N0+m∑
j=n

D
(N0+m−n)
nj (x0)M [p](x0, j, t) .

(10)

Here

N0 ≤ n≤N0+m, (11)

whereN0 is the lowest consideredmoment andD is a trian-
gular matrix. The solution of (10) has the form

M [p](x0, n, t) =

N0+m∑
k=n+1

Ank(x0)M [p](x0, k, t)

+

(
M [p](x0, n, t0)−

N0+m∑
k=n+1

Ank(x0)M [p](x0, k, t0)

)

× exp

(
cfD

(m)
nn (x0) ln

t

t0

)
. (12)

The matrix elements D
(m)
ij (x0) and Aij(x0) are given

in [8–11]. In [11] the results (12) have been compared to
those obtained with the use of the Chebyshev-polynomial
technique. The agreement of both approaches is excellent
for higher moments (n ≥ 2) and not too large x0 ≤ 0.1,
even for a small number of terms (m= 4) in the truncated
series (12). It also does not depend strongly on the scale
Q2 or the input parametrisation. In the case of a trun-
cated first moment, a similar accuracy requires more terms
(m≥ 30) to be taken into account.
In the next section we estimate the small-x0 behaviour

of the truncated first momentM [p](x0, n= 1, t).

2.3 Small-x0 behaviour of the truncated first moment

We would like to present a possible way of an approximate
determination of the small-x0 behaviour of the truncated
first momentM [p](x0, 1, t). Our starting point is the evolu-
tion equation (6), which for the first moment has the form

∂q1(x0, t)

∂t
=
αs(t)

2π

1∫

x0

dyp(y, t)G1

(
x0

y

)
. (13)

Here we denote in short-hand the truncated first moment
by q1(x0, t):

qj(x0, t)≡M [p](x0, j, Q
2) . (14)

Inserting G1(z) in the LO approximation,

G1(z) =
8

3
ln(1− z)+

4

3

(
z+
z2

2

)
, (15)

we obtain

∂q1(x0, t)

∂t
=
2αs(t)

3π

×

[
x0q0(x0, t)+

x20
2
q−1(x0, t)−2

∞∑
k=1

xk0
k
q1−k(x0, t)

]
.

(16)

In the above formula we have used the expansion of
ln(1− z):

ln(1− z) =−
∞∑
k=1

zk

k
. (17)

Taking into account that

qj(x0, t) = x
j−1
0 q1(x0, t)+ (j−1)

1∫

x0

dyyj−2q1(y, t) , (18)

we find

∂q1(x0, t)

∂t
=
2αs(t)

3π

[
q1(x0, t)

(
3

2
−2

∞∑
k=1

1

k

)

+

1∫

x0

dy

(
2
∞∑
k=1

xk0
yk+1

−
x0

y2
−
x20
y3

)
q1(y, t)

⎤
⎦ .
(19)
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The above result is the LO DGLAP evolution equation for
the truncated first moment of the nonsinglet parton dis-
tribution. This formula contains only q1 and there is no
mixing of q1 and higher or lower moments qj . Therefore we
can adopt for (19) the well known approach and write the
evolution equation of q1 in the moment space, which reads
as follows:

∂M [q1](n, t)

∂t
=
2αs(t)

3π
H(n)M [q1](n, t) . (20)

H(n) is given by

H(n) = 2
∞∑
k=1

(
1

n+k
−
1

k

)
+
3

2
−
1

n+1
−
1

n+2
. (21)

In this “moment of moment” approach (MM) we have ob-
tained a simple equation for a some complicated structure
M [q1](n, t), which is the (full) nth moment of the trun-
cated first moment of the parton density, namely

M [q1](n, t) =

1∫

0

dxxn−1
1∫

x

dyp(y, t) . (22)

The solution of (20) is

M [q1](n, t) =M [q1](n, t0) exp[a(t)H(n)] , (23)

where M [q1](n, t0) is the initial value of M [q1] for the low
scale t0:

M [q1](n, t0) =

1∫

0

dxxn−1
1∫

x

dyp(y, t0) (24)

and

a(t) =
8

33−2Nf
ln
t

t0
, (25)

with Nf the number of the quark flavours. Hence q1(x, t) is
given by the inverse Mellin transform

q1(x, t) =
1

2πi

c+i∞∫

c−i∞

dnx−nM [q1](n, t0) exp[a(t)H(n)] .

(26)

The behaviour of q1(x, t) for x→ 0 is governed by the lead-
ing (i.e. rightmost) singularities of M [q1](n, t0) as well as
H(n) in the n complex plane [20]. If we parametrise the
input parton distribution p(x, t0) in the general form

p(x, t0)∼ x
a1(1−x)a2 , (27)

we obtain

M [q1](n, t0)∼
1

n
β(a1+1, a2+1)

−
kmax∑
k=0

(−1)k

k!

Γ (a2+1)

Γ (a2+1−k)(a1+1+k)(n+a1+1+k)
.

(28)

Γ (z), β(z1, z2) in (28) are Euler functions and kmax de-
pends on a2 in the following way:

kmax =

{
∞ for fractional a2 > 0 ,

a2 for whole a2 ≥ 0 .
(29)

One can see from (21) and (28) that H(n) has the
rightmost pole at n = −1, while M [q1](n, t0) at n = 0
and n=−a1−1. In this way, for the shape of the starting
distribution nonsingular at small x, p(x, t0) (a1 = 0), the
simple pole at n= 0 and the essential singularity at n=−1
are the leading ones. Then the small-x0 behaviour of the
truncated first moment can be determined by the method
of steepest descent. We find

q1(x, t)≈
1

a2+1
−

√
e

2π
β(a2+1, z)x0z

1.5[z+2a(t)]−0.5

× exp
(
a(t)H(z−1)+0.5

√
1−4a(t) ln(x0)

)
,

(30)

where

z ≡−
1+
√
1−4a(t) ln(x0)

2 ln(x0)
. (31)

If we consider a more singular input parametrisation
p(x, t0) (a1 < 0), this singular small-x behaviour remains
stable against the LO Q2 QCD evolution. In this case
the approximate behaviour of the truncated first mo-
ment q1(x, t) is governed by the leading simple poles of
M [q1](n, t0), situated at n= 0 and n=−a1−1:

q1(x, t) ≈ β(a1+1, a2+1)

−
kmax∑
k=0

(−1)k

k!

Γ (a2+1)x
a1+1+k

Γ (a2+1−k)(a1+1+k)

× exp[a(t)H(−a1−1−k)] . (32)

In the next section we compare the results (30)–(32) with
those obtained within approaches described in Sect. 2.1
and Sect. 2.2.

3 Results for the truncated first moment
within three different approaches

In this section we present numerical results for the trun-
cated first moment of the nonsinglet parton distribution.
Predictions obtained with the use of different methods
are denoted via CHEB, FMPR or MM, according to the
applied approach (see Sects. 2.1–2.3 respectively). Thus
qCHEB1 (x0, t) results from integrating

qCHEB1 (x0, t) =

1∫

x0

dxxn−1pCHEB(x, t) , (33)

where pCHEB(x, t) is the solution of (4) and (5), while
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qFMPR1 (x0, t) is implied by (12) and has the form

qFMPR1 (x0, t) =
m+1∑
k=2

A1k(x0)qk(x0, t)

+

(
q1(x0, t0)−

m+1∑
k=2

A1k(x0)qk(x0, t0)

)

× exp

(
cfD

(m)
11 (x0) ln

t

t0

)
, (34)

 

  

Fig. 1. Small-x0 behaviour of
the truncated at x0 first mo-
ment of the nonsinglet spin
structure function gNS1 in
the case of the flat input (35).
A comparison of (30) (MM)
with the predictions based
on the Chebyshev-polynomial
method (CHEB) and FMPR
approach (34) for two values
of the number of terms in the
truncated series, m = 4, m =
30, are shown. The Bjorken
sum rule is normalised to 1

Fig. 2. Small-x0 behaviour of
the first moment of the non-
singlet spin structure func-
tion gNS1 truncated at x0 in
the case of the steep input (36).
A comparison of (32) (MM)
with the predictions based
on the Chebyshev-polynomial
method (CHEB) and FMPR
approach (34) for two values
of the number of terms in the
truncated series, m = 4, m =
30, are shown. The Bjorken
sum rule is normalised to 1

where qk(x0, t) is defined by (14).
The analytical approximate solutions (30)–(32), de-

scribing the low-x0 behaviour of q1(x0, t) within the “mo-
ment of moment” (qMM1 ) approach are compared with the
qCHEB1 and qFMPR1 results in Figs. 1–6. We consider two
values of the number of terms in the truncated series for
the FMPR-m predictions (m= 4,m= 30).We show the re-
sults for the first moment of gNS1 truncated at x0, which is
a contribution to the Bjorken sum rule [2, 3]. In the figures
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presented the total Bjorken sum rule is normalised to 1. We
use two different inputs atQ20 = 1GeV

2, namely

p
(
x,Q20

)
≡ gNS1

(
x,Q20

)
∼ (1−x)3 , (35)

p
(
x,Q20

)
≡ gNS1

(
x,Q20

)
∼ x−0.4(1−x)2.5 . (36)

A parametrisation (36) more singular at small x incor-
porates the latest knowledge about the low-x behaviour

Fig. 3. Truncated first mo-
ment qMM1 (32) as a function
of a1 in the input parametrisa-
tion p(x,Q20)∼ x

a1(1−x)3 for
fixed x0 = 0.01 and x0 = 0.05.
A comparison with the predic-
tions based on the Chebyshev-
polynomial method is shown

Fig. 4. Truncated first mo-
ment qMM1 (30) as a function
of a2 in the input parametri-
sation p(x,Q20) ∼ (1−x)

a2 for
fixed x0 = 0.01 and x0 = 0.1.
A comparison with the predic-
tions based on the Chebyshev-
polynomial method is shown

of the polarised structure functions [21, 22]. The inte-
gral

∫
dxgNS1 truncated at x0 = 0.01 is reduced by about

8% for the Regge input (35) and about 20% for (36) in
comparison to the total Bjorken sum rule. Figures 1–6
show that for small x0 ≤ 0.01 there is a good agreement
between the MM results (30)–(32) and the predictions
obtained with the use of the Chebyshev-polynomial ap-
proach, which can be regarded as reliable. The percentage
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error

Ea(x0, Q
2) =

∣∣qa1 (x0, Q2)− qCHEB1 (x0, Q
2)
∣∣

qCHEB1 (x0, Q2)
·100% , (37)

where a denotes MM, FMPR-4 or FMPR-30 results,
is about 3% in the case of MM solutions for x0 = 0.01
and Q2 = 10GeV2, independent on the shape of the

Fig. 5. Q2 dependence of the
truncated first moment
qMM1 (30) at fixed x0 = 0.01
for input parametrisation (35).
A comparison to the predic-
tions based on the Chebyshev-
polynomial method and FMPR
approach (34) for two values
of the number of terms in the
truncated series, m = 4, m =
30, is shown

Fig. 6. Q2 dependence of
the truncated first moment
qMM1 (32) at fixed x0 = 0.01
for input parametrisation (36).
A comparison to the predic-
tions based on the Chebyshev-
polynomial method and FMPR
approach (34) for two values
of the number of terms in
the truncated series, m = 4,
m= 30, is shown

input parametrisation. A similar accuracy gives taking
into account more terms (m= 30) in the truncated series
within the FMPR approach (FMPR-30), while for m= 4
the error (37) is about 4% in the case of the flat input
and 6% in the case of the more singular one. Ea(x0, Q

2)
grows slowly with increasing Q2 (see Figs. 5 and 6)
and for Q2 = 100GeV2 we get EMM(x0 = 0.01, Q

2) ≈
EFMPR-30(x0 = 0.01, Q

2) ≈ 4% for the flat parametri-
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sation and 7% respectively for the more singular in-
put. Note that for the truncation points x0 ≤ 0.01 our
approximate analytical solutions (30)–(32) are as reli-
able as the FMPR-30 predictions and more exact than
the FMPR-4 results. This does not depend either on
the shape of the input parametrisation or on the value
of Q2.
In the next section we determine the low-x contribution

to the Bjorken sum rule.

4 Low-x contribution to the Bjorken sum rule

Among all moments of the structure functions, the Bjorken
sum rule (BSR) [2, 3] is one of the convenient tests of QCD.
BSR is a fundamental relation for polarised scattering, de-
scribing a relationship between spin dependent DIS and
the weak coupling constant defined in neutron β-decay. In
the limit of the infinite momentum transfer Q2, the BSR
reads

IBSR ≡ Γ
p
1 −Γ

n
1 =

1∫

0

dx (gp1(x)− g
n
1 (x)) =

1

6

gA

gV
, (38)

where gV and gA are the vector and axial vector couplings.
From recent measurements [23] gA/gV = 1.2695±0.0029.
BSR refers to the first moment of the nonsinglet spin de-
pendent structure function gNS1 :

gNS1 (x,Q
2) = gp1(x,Q

2)− gn1 (x,Q
2) , (39)

where gp1 and g
n
1 are the spin structure functions for the

proton and neutron. The asymptotic relation (38) at finite

Fig. 7. Low-x contribution
to the Bjorken sum rule (43)
for different a1 and a2 in the
input parametrisation (41).
x0 = 0.01 and Q

2 = 5GeV2

Q2	 Λ2QCD takes the form, with pQCD corrections,

1∫

0

dxgNS1 (x,Q
2)

=
1

6

gA

gV

[
1−
αs

π
−3.583

(αs
π

)2
−20.215

(αs
π

)3]
.

(40)

The validity of the sum rule is confirmed in polarised DIS
at the level of 10% [24–28]. Evaluation of the sum rules re-
quires knowledge of the polarised structure functions over
the entire region of x: 0≤ x≤ 1. The experimentally acces-
sible x range for the spin dependent DIS is however limited
(0.7> x> 0.003 for the SMC data [24–26], 0.6> x> 0.023
for the HERMES data [29–31]), and therefore one should
extrapolate the results to x= 0 and x= 1. The extrapola-
tion to x→ 0, where the structure functions grow strongly,
is much more important than that to x→ 1, where the
structure functions vanish. The extrapolation towards x=
0 suffers from large uncertainties, being essentially depen-
dent on the used QCD fit. The “flexibility” of the chosen
parametrisation appears in the agreement with the experi-
mental data, giving however enough freedom in the unmea-
sured regions [32]. In the case of the BSR this allows for
a significant reduction of the low-x contribution.
In our approach we can test how the small-x contri-

bution to the BSR depends on the different (less steep
or steeper) input parametrisations at the initial scale
Q20 =GeV

2:

gNS1
(
x,Q20

)
= ηxa1(1−x)a2 . (41)
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Fig. 8. Constraints on the
parametrisation of gNS1 , im-
plied by the experimental esti-
mations of the low-x contribu-
tion to the Bjorken sum rule.
SMC, SLAC: 10% ≤ r(x0 =
0.01, 5) ≤ 20% (full colour),
HERMES: 20% ≤ r(x0 =
0.023, 5) ≤ 40% (dotted)

Here η is a normalization factor:

η =
IBSR

β(a1+1, a2+1)
. (42)

The exponent a1 controls the behaviour of the structure
function gNS1 as x→ 0 and the factor (1−x)

a2 ensures the
vanishing of gNS1 at x→ 1. The percentage contribution to
the BSR, coming from the small-x region 0≤ x≤ x0 is de-
fined by

r
(
x0, Q

2
)
=

x0∫
0

dxgNS1 (x,Q
2)

1∫
0

dxgNS1 (x,Q
2)

·100% . (43)

The ratio r for x0 = 0.01 varies from a few to tens of per-
cents for the different configurations of −1 ≤ a1 ≤ 0 and
0 ≤ a2 ≤ 8. The r-distribution at x0 = 0.01 is shown in
Fig. 7. One can see that the small-x contribution to the
BSR grows with increasing a2 and decreasing a1. For the
Regge flat parametrisation (35) r is at the level of 5–10%,
what is significantly different from the result based on the
input (36), where r ∼ 20%. From theoretical analyses it is
known that the small-x behaviour of the nonsinglet po-
larised structure function gNS1 is governed by the double
logarithmic terms i.e. (αs ln

2 x)n [21, 22, 33–35]. This leads
to the form of gNS1 singular at low-x

gNS1 (x,Q
2)∼ x−λ , (44)

with λ≈ 0.4. The LO DGLAP approach with use of the
singular input (36) pretends the double logarithmic ln2 x
resummation. Low-x experimental data [24–26,29–31]

clearly confirm the rise of gNS1 in this region. However, the
errors on the present data are too large to reliably support
or contradict this x−0.4 behaviour. The “freedom” in the
initial parametrisation to satisfy the small-x experimental
extrapolation of the BSR is seen in Fig. 8. The experi-
mental data can be satisfactorily reproduced by e.g. input
∼ (1−x)6 nonsingular as x→ 0 and by e.g. the singular
one, ∼ x−0.5(1−x)1, as well. SMC and SLAC measure-
ments imply that 10–20% of the BSR comes from x values
less than 0.01 [24–28, 36]. Also the HERMES data [29–31]
enable one to determine the low-x contribution to the BSR
at 0.023 between 20–40%. The wide range of these estima-
tions could be restricted by new spin data concerning this
mystery and the small-x region of interest.

5 Conclusions

In this paper we have compared results for the first mo-
ment q1 of the parton distribution truncated at x0 ob-
tained within different approaches. Thus we have solved
numerically the LO DGLAP evolution equation for the
nonsinglet function in the x-space using the Chebyshev-
polynomial expansion and then after integrating over x
we have got the prediction qCHEB1 , which can be treated
as an exact one. Next, using the evolution equations writ-
ten in the moment space, we have found a closed system
of m+1 solutions for the truncated moments, where the
result qFMPR-m1 obtained is expressed by values of the m
higher moments. The considered numbers of terms in the
truncated series were m = 4 and m = 30. Working in the
moment space we have also found an alternative way to
determine the small-x0 behaviour of the truncated first
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moment. Taking into account the relation between the nth
and jth truncated moment, we were able to derive the evo-
lution equation, which does not contain mixing between
different moments. Then, adopting the standard analytical
method of the full moments to the case of the first trun-
cated moment, we have found the approximate behaviour
of q1 as x→ 0. In this way the inverse Mellin transform
performed with the use of the method of steepest descent
implies the result qMM1 within our modified “moment of
moment” approach.
We have shown that for small x0 ≤ 0.01 there is a good

agreement between the MM results and the reliable predic-
tions, obtained with the use of the Chebyshev-polynomial
method. This agreement occurs independently either on
the shape of the input parametrisation or on the value of
Q2. It has been also found that for small x0 the accuracy
of the qMM1 and qFMPR-301 results are similar, being clearly
better than in the case of qFMPR-41 predictions.
We have presented results concerning the spin structure

function gNS1 and the contribution truncated at x0 = 0.01
to the Bjorken sum rule. It has been found that the choice
of the input parametrisation has a large impact on the
evaluation of the low-x contribution to the BSR. This con-
tribution can vary from a few percents for the flat (∼ const)
input to tens of percents for the steep (∼ x−0.5) one. Re-
cent experimental data confirm the rise of the polarised
structure functions at small x. However, because of the
large uncertainties, reliable support or contradiction of the
theoretical expectations is still out of reach.
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